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Kardar-Parisi-Zhang equation and the d expansion
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We show how thed expansion of Benderet al. can be used as a relevant tool for the study of the Kardar-
Parisi-Zhang equation. We obtain the exponents for the substrate dimensionD52 and the critical value ofD
for which the weak coupling exponents appear.
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The question of kinetic roughening of interfaces has
tracted immense attention in the last decade. A much stu
paradigm is the Kardar-Parisi-Zhang~KPZ! model @1#. For
substrate dimensions~D! below two, it shows a roughenin
of the interface. Less well understood is the situation
D>2, where the model is supposed to show a transition fr
rough to smooth behavior as the strength of the coup
constant of the nonlinear term is varied. Since the pertur
tive renormalization group treatment works only forD,2,
various new techniques@2,3# have been introduced to de
with the situation forD>2. In this paper we propose a
amusing, though not very accurate, trick for looking at t
problem. We exploit thed expansion technique of Bende
et al. @4#. To our knowledge, thed expansion has never bee
employed for studying nonlinear stochastic differential eq
tions. The reason, we believe, lies in the technical compl
tion involved in doing a genuine second orderd-expansion
calculation. We circumvent this problem by making use
an approximation. Another important issue in thed-expan-
sion calculation is the choice of the unperturbed theory.
the study of critical exponents by this technique, it was no
by Gandhi and McKane@5# that the starting point is vital
This has been a crucial point for us as well.

The heighth(rW,t) of the interface above some referen
level has the stochastic dynamics

]h

]t
5G¹2h1l~¹W h!21N, ~1a!

^N~rW,t !N~rW8,t8!&52D0d~rW2rW8!d~ t2t8! ~1b!

in the KPZ picture. The vectorrW is aD-dimensional vector in
the substrate. The quantities that are usually studied ar~i!
the response or Green’s functionG(k,w),

G~k,w!5
1

d D~kW1kW8!d~w1w8!
K ]h~k,w!

]N~k8,w8! L ~2!

and ~ii ! the correlation functionC(k,w)

C~k,w!5
^h~k,w!h~k8,w8!&

dD~kW1kW8!d~w1w8!
. ~3!

A scaling solution is assumed forG(k,w) andC(k,w),
namely,

G~k,w!5k2zg~w / kz! ~4a!
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and

C~k,w!5
1

kD12a1z f ~w / kz!. ~4b!

The exponentz has to do with critical slowing down and
the exponenta has to do with roughness. The interface
rough if a.0. Since the perturbative renormalization gro
works very well forD,2, the questions one would like t
address in any new scheme are as follows:~i! What is the
value ofz for D52? ~ii ! At what value ofDc ~upper critical
dimension! of D is z52, the mean field value?

The idea behind ourd expansion is to consider the dy
namics

]h

]t
5~2¹2!d@G¹2h1l~¹W h!212d#1N, ~5a!

^N~rW8,t8!N~rW,t !&52D0d~rW2rW8!d~ t2t8!. ~5b!

We note that ford50 one has the KPZ problem, while fo
d51, we have a problem that can be exactly solved@6# for
1,D,4. Our method will be to start fromd50 with un-
known exponentsa andz and produce the lowest order non
trivial correction from thed expansion. We match the resul
ing a and z for d51 to the exact answer. Thus the KP
values for the exponents are obtained.

It should be pointed out that our approach is differe
from the traditional one. In the usual method of doing p
turbation theory, one starts from an exactly solvable probl
and builds up corrections to the exact answer. In this ca
we find it more convenient to start from the problem th
cannot be exactly solved~KPZ!, find the first correction to it
in perturbation theory, and match the resulting answer to
exactly solvable case.

We now explain how thed expansion is supposed to wor
and what technical problem is going to arise. Turning to E
~5a!, we note that@(¹W h)2#11d can be expanded as

@~¹W h!2#11d5~¹W h!2F11d ln~¹W h!21
d2

2
@ ln~¹W h!2#21••• G .

~6!

If we introduce the expansion of Eq.~6! into Eq. ~5! and
attempt a perturbation theory ind, the calculation will be
R2097 © 1997 The American Physical Society
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very awkward. Instead, one studies the theory with the po
nomial interaction@4# written as

]h

]t
5~2¹2!dFG~¹2h!1l~¹W h!21l(

k51

K

~¹W h!21bkPkG1N,

~7!

where the coefficientsPk are polynomials inb1 ,b2 ,...,bk
andd. To begin with, one considers theb i to be integers so
that the usual diagrammatics can be performed. The Gre
function G̃ of the system with equation of motion given b
Eq. ~7! can now be calculated. What one requires, howev
is the Green’s functionG of the system described by Eqs.~5!
and ~6!. To get G from G̃, we exploit the identity
(d/dx)ax5ax lna, consider the set {Pi} as continuous,
choose the correct differential operatorD,

D5(
j ,k

Ajk F ]

]bk
G j , ~8!

and finally use

G5DG̃ub15b25•••5bk50 . ~9!

To work toO(d2), we need

P15d1d2, P252d1d2,
~10!

D25
1

2 F ]

]b1
2

]

]b2
G1

1

4 F ]2

]b1
2 1

]2

]b2
2 G .

The strategy is now plain. If the response functionG(k,w) is
a
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to be calculated, then we first evaluateG̃(k,w) using

Dyson’s equation,G̃21(k,w)5G0
21(k,w)1 S̃(k,w)52 iw

1G0(k)1 S̃(k,w), whereG0
21(k,w)52 iw1G0(k) is the

response for the KPZ system andS̃(k,w) is the self energy
for the polynomial interaction of Eq.~7!. The task is to cal-

culate S̃(k,w) as a function ofbk ~one calculates for intege
valuedbk and generalizes! and use the derivative operator o
Eq. ~10! to arrive atS(k,w) and thusG(k,w). The difficulty
is also clear at this point. For different values ofbk an actual

analytic expression has to be obtained forS̃(k,w), so that
the derivative may be evaluated when necessary. The

lytic evaluation of S̃(k,w) for arbitrary integer valuesk is
near impossible. We now explain the approximation that l
us proceed further.

Returning to Eq.~7!, we note that forbk51, we have the
usual KPZ-like term with the single loop self-energy give
by @of necessity the lowest order calculation isO(d2) and
henceP2 is what we are interested in#

(~k,w50!5l2P2
2E

pW 1qW 5kW

dDp

~2p!D
dw

~2p!

3~pW •kW !~pW •qW !C~pW ,w!G~qW ,2w!, ~11!

whereC(p,w) andG(q,w) stand for the correlation function
and response function of the system withPk50 and in the
contribution toS(k), d has been set equal to zero in th
integrand sinceP2

2 is alreadyO(d2). Now, for bk52n,
wheren is an integer,
S̃n~k,w50!5l2P2
2E

pW 11pW 21•••pW 2n111qW
)
i51

2n
dDpi

~2p!D
dwi

2p
~qW •pW 1!~kW•pW 1!~pW 2•pW 3!

2•••~pW 2n•pW 2n11!
2

3C~pW 1 ,w1!C~pW 2 ,w2!•••C~pW 2n11 ,w2n11!GS qW ,2(
i
wi D ~2n12!~2n12!! ~12!
e-
me

the

the
-

One needs to evaluateS̃(k) of Eq. ~12! as an analytic func-
tion of n, whence it becomes a function ofbk and allows for
the evaluation of the derivative. The task of obtaining
analytic expression for Eq.~12! for arbitrary n is clearly
hopeless.

It would be possible to obtain an analytic approximant

S̃n(k) if in some limit the different integrals factored. T
get the required insight, we return to Eq.~11! and note that
S(k) can be expanded in a power series about its vari
poles@7#. The particular pole, which is of the greatest help
us, is the one that obtains from the region of the integra
with p.0. With the scalings of Eqs.~4a! and ~4b!, the pole
contribution is obtained as
n

r

s

d

Spole5l2k22zP2
2 CD

~2p!D
1

D E
p<k

pD11dp

pD12a

5l2k22zP2
2 CD

~2p!D
1

D
A

k2~12a!

2~12a!
, ~13!

whereA is a constant involving the amplitudes of the corr
lation function and relaxation rate. To make use of the sa
pole approximation in Eq.~12!, we note that the required
part of the phase space of the integrand comes from
region p1 ,p2 ,...,p2n11.0, q.k. Now, the different mo-
ments are decoupled and the pole approximation leads to
factor (12a)22n. Taking the combinational factor into ac
count,
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S̃n5Spole

~2n12!! ~2n12!

4
M2n5Spole

MbG~b13!

4
,

~14!

where

M5A
CD

~2p!D
1

D

k2~12a!

2~12a!
.

To obtain the self-energyS of the original problem, one
needs to operate onS̃n with D2 of Eq. ~10! and this leads to

S~k!5Spole H ln2M1@21 4
3A3G8~3!#

3 lnM1
4A3
3

@G8~3!1G9~3!#J . ~15!

The self-energyS(k) is simply the changeDG in the re-
laxation rate due to finited and in the approximation made

Spole5d2G0~k!,

where G0(k) is the relaxation rate of the pure KPZ~i.e.,
d50!. Thus

DG~k!

G0~k!
5d2F ln2M1S 21

4A3
3

G8~3! D
3 lnM1

4A3
3

@G8~3!1G9~3!#G . ~16!

At this point, we need to discuss the accuracy ofDG/G0
in Eq. ~16!, so far as the approximations made in evaluat
the integrals forDG and G0 are concerned. To do so, w
consider the technique of Bouchaud and Cates@2# for deter-
mining the exponenta. From the self-energy and the corr
lation function, they obtain two integralsI andJ as functions
of a andD. The exponenta is obtained from the require
ment thatI5J. The integrals are

I5E dDp

~2p!D
@pW •~1W2pW !#@1W•pW #

pD12a@ upu22a1u1W2pW u22a#
, ~17a!

J5
1

2 E dDp

~2p!D
@pW •~1W 2pW !#2

pD12au1W 2pW uD12a@ upu22a1u1W 2pW u22a#
.

~17b!
s.

.

g

The integrals are evaluated numerically andI5J yields a
51

2 for D51, a50.30 forD52, anda50 atDc53.6. If we
evaluateI andJ in the pole approximation, then we obta
a5(42D)/6, giving a51

2 at D51, a51/3 at D52, and
a50 for Dc54, in very good agreement with the numeric
values. The individual integrals can differ by up to 20%, b
the ratio always turns out to be quite accurate. We h
investigated other situations~mainly in dynamic critical phe-
nomena! and found that ratios turn out within 5% of th
numerical answer in all the cases studied. We estimate
error inDG/G0 to be no more than 10%~the maximum error
in the comparison shown above! due to the approximate
evaluation of integrals.

Returning to Eq.~16!, we note thatM}k2(12a0) ~a0 is the
KPZ exponent! and henceDG has a constant lnk and (lnk)2

parts. The constant simply renormalizes the amplitude of
KPZ relaxation rate. The ln2k term will cancel with a similar
term coming from the two-loop, i.e.,O(l4), contribution of
the pure KPZ, forcing in the process a fixed point value
l2. This is equivalent to removing transients to find t
asymptotic scaling behavior. The lnk term renormalizes the
KPZ relaxation, producing a changeDz in the KPZ expo-
nent. Thus, if the KPZ relaxation rate isG0(k)5G0k

z0 then
to O(d2), the system given in Eq.~5a! has the exponen
z5z01Dz, where

Dz5d2~12a0!S 11
2A3
3

G8~3! D
5d2~z021!S 11

2A3
3

G8~3! D . ~18!

For d51, the system given in Eq.~5a! has the exponen
z5 3

5D12.4 and thus

z01~z021!S 11
2A3
3

G8~3! D 5 3
5D12.4, ~19!

the central result of this paper. This leads to~i! z051.67 and
D52 and~ii ! Dc54.07, wherez052.

The values ofz0 andDc are reasonably close to the nu
merical values (z051.63 andDc53.67!. However, that is
more accidental than anything else. One would not advoc
this scheme for its numerical accuracy; it is simply an am
ing application of thed expansion.

Correspondence with Dr. A. J. McKane is gratefully a
knowledged.
@1# M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett.56, 889
~1986!.

@2# J. P. Bouchaud and M. E. Cates, Phys. Rev. E47, R1455
~1993!.

@3# J. P. Doherty, M. A. Moore, J. M. Kim, and A. J. Bray, Phy
Rev. Lett.72, 2041~1994!.

@4# C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky, and L
M. Simmons, Phys. Rev. Lett.58, 2615~1987!; Phys. Rev. D
37, 1472~1988!.

@5# S. K. Gandhi and A. J. McKane, Nucl. Phys.B419, 424
~1994!.

@6# Z. W. Lai and S. Das Sarma, Phys. Rev. Lett.66, 325 ~1993!.
@7# J. K. Bhattacharjee and R. A. Ferrell, J. Math. Phys.~N.Y.! 21,

534 ~1980!.


