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Kardar-Parisi-Zhang equation and the é expansion
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We show how thes expansion of Bendeet al. can be used as a relevant tool for the study of the Kardar-
Parisi-Zhang equation. We obtain the exponents for the substrate dimé&hsidrand the critical value ob
for which the weak coupling exponents appear.
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The question of kinetic roughening of interfaces has atand
tracted immense attention in the last decade. A much studied
paradigm is the Kardar-Parisi-ZharigPZ) model[1]. For 1
substrate dimension®) below two, it shows a roughening Clk,w)= i 57zarz F(W/K?). (4b)
of the interface. Less well understood is the situation for

D=2, where the model is supposed to show a transition from ¢ exponent has to do with critical slowing down and

rough to smooth behavior as the strength of the couplinghe exponenix has to do with roughness. The interface is
constant of the nonlinear term is varied. Since the perturbayggh if o>0. Since the perturbative renormalization group
tive renormalization group treatment works only B2, \yqrks very well forD<2, the questions one would like to
various new technique?,3] have been introduced to deal j4qress in any new scheme are as follofils\What is the
with the situation forD=2. In this paper we propose an 41ye ofz for D=27 (i) At what value ofD, (upper critical
amusing, though not very accurate, trick for looking at th'sdimensior) of D is z=2, the mean field value?

problem. We exploit thes expansion technique of Bender  The idea behind ous expansion is to consider the dy-
et al.[4]. To our knowledge, thé expansion has never been 5mics

employed for studying nonlinear stochastic differential equa-

tions. The reason, we believe, lies in the technical complica- oh .

tion involved in doing a genuine second ordeexpansion —=(—=V?)ITV?h+A\(Vh)2*2%]+N, (53
calculation. We circumvent this problem by making use of Jt

an approximation. Another important issue in thexpan- . . ..

sion calculation is the choice of the unperturbed theory. In (N(r"t")N(r,t))=2Dod(r—r")s(t—t").  (5b)
the study of critical exponents by this technique, it was noted

by Gandhi and McKané5] that the starting point is vital. We note that for6=0 one has the KPZ problem, while for

This has been a crucial point for us as well. 6=1, we have a problem that can be exactly soli@Hfor
The heighth(r,t) of the interface above some reference 1<D<4. Our method will be to start fron=0 with un-
level has the stochastic dynamics known exponents andz and produce the lowest order non-

trivial correction from thed expansion. We match the result-
ing @ and z for =1 to the exact answer. Thus the KPZ
values for the exponents are obtained.
It should be pointed out that our approach is different
(N(FHN(r,t")=2Do8(r—r")s(t—t") (1b)  from the traditional one. In the usual method of doing per-
_ turbation theory, one starts from an exactly solvable problem
in the KPZ picture. The vectaris aD-dimensional vector in - and builds up corrections to the exact answer. In this case,
the substrate. The quantities that are usually studiediare we find it more convenient to start from the problem that

oh .
E=FV2h+)\(Vh)Z+N, (18

the response or Green'’s functi@(k,w), cannot be exactly solvedkP2), find the first correction to it

in perturbation theory, and match the resulting answer to an
Gikow) = 1 ah(k,w) @ exactly solvable case.
(kw)= SP(k+k')s(w+w') \IN(K',w') We now explain how thé expansion is supposed to work

and what technical problem is going to arise. Turning to Eq.

and (ii) the correlation functiorC(k,w) (5a), we note thaf (Vh)?]**¢ can be expanded as

e = SPkwh(k W) 5 . i .8
W)= S ik owrw') B [(Vh212=(Vh)? 1+ 8 In(Vh)2+ - [In(Vh) 22+ -+ |

(6)

A scaling solution is assumed f@(k,w) and C(k,w),

namely, , . .
If we introduce the expansion of E) into Eq. (5) and

G(k,w)=k *g(w/k? (49 attempt a perturbation theory if the calculation will be
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very_aw_kward..Instead,_one studies the theory with the polyto be calculated, then we first evaluaé(k,w) using
nomial interactio 4] written as Dyson'’s equationﬁfl(k,w)=Ggl(k,w)+ S (kow) = —iw
+To(k)+ = (k,w), WhereGgl(k,w)=—iw+F0(k) is the

response for the KPZ system ar¥ik,w) is the self energy
(7)  for the polynomial interaction of Eq7). The task is to cal-

where the coefficient®, are polynomials ind;,B,,....8c  culate Z(k,w) as a function of3, (one calculates for integer
and 8. To begin with, one considers th& to be integers so  Valuedsy and generalizgsand use the derivative operator of
that the usual diagrammatics can be performed. The Greenfd- (10) to arrive ats (k,w) and thusG(k,w). The difficulty
function G of the system with equation of motion given by is also clear at this point. For different values/i;g‘an actual

Eg. (7) can now be calculated. What one requires, howeveranalytic expression has to be obtained ®(tk,w), so that

is the Green'’s functio of the system described by EqS)  the derivative may be evaluated when necessary. The ana-

and (6). To get G from G, we exploit the identity |ytic evaluation of 3 (k,w) for arbitrary integer valuek is
(d/dx)a*=a* Ina, consider the set B;} as continuous, near impossible. We now explain the approximation that lets

oh . Koo
E=(—v2)fs [(V2h)+X(Vh)2+X >, (Vh)2"Ap, | +N,
k=1

choose the correct differential operafr us proceed further.
Returning to Eq(7), we note that foiB,=1, we have the
ER usual KPZ-like term with the single loop self-energy given
D=2 Aj | (8 by [of necessity the lowest order calculationGg 52) and
Tk B . ; .
henceP, is what we are interested]in
and finally use
= d°p dw
G=DGls,p,- - p—o- © kw=0 =>\2P2f O W
B1=B> By E( ’ ) 2 b+EFk(27T)D (27T)

2 N
To work to O(6°), we need X (B-K)(B-6)C(B.wW)G(G, —w), (11)

P,=6+ 6%, P,=—6+6°
(10) whereC(p,w) andG(q,w) stand for the correlation function

1[ 4 d 1[0* & and response function of the system with=0 and in the
D2=3 B. 9B, t2 EJF(?_E contribution to3(k), & has been set equal to zero in the

integrand sinceP3 is already O(5%). Now, for B,=2n,
The strategy is now plain. If the response funct®(k,w) is  wheren is an integer,

~ 2n de dw;
En(k,w=0>=x2P§fh+bﬁ ool G 2 (@B BB Bo)” (B Bana)?
R2n+1 -

(2n+2)(2n+2)! (12)

X C(py,W1)C(P2,Wa)- - C(Pans+1 ,W2n+1)G( q,— Z Wi

One needs to evaluat® (k) of Eqg. (12) as an analytic func-
tion of n, whence it becomes a function gf and allows for
the evaluation of the derivative. The task of obtaining an 2(1-a)

analytic expression for Eq.12) for arbitrary n is clearly — \2k2-2p2 Co EA k (13)
hopeless. 22mP D" 2(1-a)’

It would be possible to obtain an analytic approximant for ) . ) .
whereA is a constant involving the amplitudes of the corre-

2p(k) if in some limit the different integrals factored. To |ation function and relaxation rate. To make use of the same
get the required insight, we return to Ed.1) and note that pole approximation in Eq(12), we note that the required

3 (k) can be expanded in a power series about its varioupart of the phase space of the integrand comes from the
poles[7]. The particular pole, which is of the greatest help toregion p;,p,,....psn:1=0, g=k. Now, the different mo-

us, is the one that obtains from the region of the integrananents are decoupled and the pole approximation leads to the
with p=0. With the scalings of Eqg4a) and (4b), the pole factor (1— )~ 2?". Taking the combinational factor into ac-
contribution is obtained as count,

C 1 D+ld
Epol(—:':)\zkz_ng - j ‘ P P

(277)D5 p< pDJrZa
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(2n+2)'(2n+2) o MAT(B+ 3) The integrals are evaluated numerically dndJ yields «
7 =Zpoe 4 =}for D=1, =0.30 forD=2, anda=0 atD,=3.6. If we
(14) evaluatel andJ in the pole approximation, then we obtain
a=(4—-D)/6, giving a=3 at D=1, «=1/3 atD=2, and
where a=0 for D=4, in very good agreement with the numerical
C 1 K21 values. The individual integrals can differ by up to 20%, but
— b =~ the ratio always turns out to be quite accurate. We have
2m° D 2(1-a)’ investigated other situatiorimainly in dynamic critical phe-
. - nomena and found that ratios turn out within 5% of the
To obtain the self-energ}. of the original problem, one  merical answer in all the cases studied. We estimate the
needs to operate ai, with D, of Eq. (10) and this leads to  error in AT'/T', to be no more than 10%he maximum error
in the comparison shown abgvelue to the approximate
3(K) =3 pole IN2M +[2+£/3['"(3)] evaluation of integrals.
Returning to Eq(16), we note thaM «k?(1~%0) (qy is the
443 KPZ exponentand henceAl’ has a constant knand (Irk)?
XInM+ ——[['"(3)+I"(3)]; . (15) parts. The constant simply renormalizes the amplitude of the
3 KPZ relaxation rate. The fik term will cancel with a similar
term coming from the two-loop, i.eQ(\*), contribution of
the pure KPZ, forcing in the process a fixed point value of
A2, This is equivalent to removing transients to find the
2 pole= 5T o(k), asymptotic scaling behavior. Thekiterm renormalizes the
KPZ relaxation, producing a changez in the KPZ expo-
nent. Thus, if the KPZ relaxation rate I (k) =I"gk* then

2= pole

M

The self-energy (k) is simply the changdr in the re-
laxation rate due to finité and in the approximation made,

where I'g(k) is the relaxation rate of the pure KPZe.,

6=0). Thus to O(5%), the system given in Eq5a) has the exponent
AT (k) { 4.3 ) z=2743+ Az, where
=6’ InPM+| 2+ —T"'(3
Fo(k) 3 ¥ 23
Az=58%(1—ag)| 1+ ——T"(3)
43 3
><|nM+T[F’(3)+F”(3)] . (16) 23
o _ =6%(zo—1) 1+—r'(3)). (18)
At this point, we need to discuss the accuracyAdf/T" 3

in Eq. (16), so far as the approximations made in evaluatingFor 5=
the integrals forAI' andI'y are concerned. To do so, we
consider the technigue of Bouchaud and Ca#ddor deter-

1, the system given in Eq5a has the exponent
z=3D+2.4 and thus

mining the exponenk. From the self-energy and the corre- 23

lation function, they obtain two integralsandJ as functions 2o+ (zo- | 1+ —- F'(3)> =§iD+2.4, (19
of @ andD. The exponentx is obtained from the require-

ment thatl =J. The integrals are the central result of this paper. This leadgifjoz,=1.67 and

D=2 and(ii) D,=4.07, wherez,=2.

d°p [p-(1-p)][1-p] The values ofzy and D, are reasonably close to the nu-

= (2m)° pP 29[| p|2~+|T-p|> ] (173 merical values %,=1.63 andD.=3.67. However, that is
more accidental than anything else. One would not advocate
1 d°p [p- (1- p)1? this scheme for its numerical accuracy; it is simply an amus-
J= 2] @mP 0024 1— pP 24 | p|Z "+ | I— B2~ 7] . ing application of thes expansion.
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